Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474566

RESUMO

In light of industrial developments, water pollution by heavy metals as hazardous chemicals has garnered attention. Addressing the urgent need for efficient heavy metal removal from aqueous environments, this study delves into using poly-γ-glutamic acid (γ-PGA) for the bioflocculation of heavy metals. Utilizing γ-PGA variants from Bacillus subtilis with different molecular weights and salt forms (Na-bonded and Ca-bonded), the research evaluates their adsorption capacities for copper (Cu), lead (Pb), and cadmium (Cd) ions. It was found that Na-bonded γ-PGA with a high molecular weight showed the highest heavy metal adsorption (92.2-98.3%), particularly at a 0.5% concentration which exhibited the highest adsorption efficiency. Additionally, the study investigated the interaction of γ-PGA in mixed heavy metal environments, and it was discovered that Na-γ-PGA-HM at a 0.5% concentration showed a superior adsorption efficiency for Pb ions (85.4%), highlighting its selectivity as a potential effective biosorbent for wastewater treatment. This research not only enlightens the understanding of γ-PGA's role in heavy metal remediation but also underscores its potential as a biodegradable and non-toxic alternative for environmental cleanup. The findings pave the way for further exploration into the mechanisms and kinetics of γ-PGA's adsorption properties.


Assuntos
Metais Pesados , Ácido Poliglutâmico/análogos & derivados , Poluentes Químicos da Água , Cádmio/química , Ácido Glutâmico , Chumbo , Peso Molecular , Metais Pesados/química , Água , Íons , Cloreto de Sódio , Adsorção , Concentração de Íons de Hidrogênio , Cinética
2.
Small Methods ; 8(2): e2300429, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37381684

RESUMO

Over the past few decades, organic-inorganic halide perovskites (OIHPs) as novel photocatalyst materials have attracted intensive attention for an impressive variety of photocatalytic applications due to their excellent photophysical (chemical) properties. Regarding practical application and future commercialization, the air-water stability and photocatalytic performance of OIHPs need to be further improved. Accordingly, studying modification strategies and interfacial interaction mechanisms is crucial. In this review, the current progress in the development and photocatalytic fundamentals of OIHPs is summarized. Furthermore, the structural modification strategies of OIHPs, including dimensionality control, heterojunction design, encapsulation techniques, and so on for the enhancement of charge-carrier transfer and the enlargement of long-term stability, are elucidated. Subsequently, the interfacial mechanisms and charge-carrier dynamics of OIHPs during the photocatalytic process are systematically specified and classified via diverse photophysical and electrochemical characterization methods, such as time-resolved photoluminescence measurements, ultrafast transient absorption spectroscopy, electrochemical impedance spectroscopy measurements, transient photocurrent densities, and so forth. Eventually, various photocatalytic applications of OIHPs, including hydrogen evolution, CO2 reduction, pollutant degradation, and photocatalytic conversion of organic matter.

3.
Int J Biol Macromol ; 257(Pt 1): 128502, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040139

RESUMO

As a natural raw material to replace synthetic chemicals, cellulose and its derivatives are the most popular choices in the pharmaceutical industry. For drug delivery applications, cellulose is usually used as a cellulose nanocrystal (CNC). CNC-based hydrogels are widely utilized for drug delivery because drug molecules can be encapsulated in their pore-like structures. This study aims to develop CNC hydrogels for the delivery of doripenem antibiotics. CNC was obtained from jackfruit peel extraction, and alginate was used as a network polymer to produce hydrogels. Ionotropic gelation was used in the synthesis of CNC-alginate hydrogel composites. The maximum adsorption of doripenem by CNC was 65.7 mg/g, while the maximum adsorption by CNC-alginate was 98.4 mg/g. One of the most challenging aspects of drug delivery is predicting drug release from a solid matrix using simple and complex mathematical equations. The sigmoidal equation could represent the doripenem release from CNC, while the Ritger-Peppas equation could describe the doripenem release from CNC-Alginate. The biocompatibility testing of CNC and CNC-alginate against a 7F2 cell line indicates that both materials were non-toxic.


Assuntos
Artocarpus , Nanopartículas , Hidrogéis/química , Celulose/química , Doripenem , Alginatos/química , Adsorção , Nanopartículas/química
4.
Int J Biol Macromol ; 258(Pt 2): 128977, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154722

RESUMO

By employing co-cultivation technique on Komagataeibacter xylinum and Lactococcus lactis subsp. lactis, bacterial cellulose (BC)/nisin films with improved antibacterial activity and mechanical properties were successfully produced. The findings demonstrated that increased nisin production is associated with an upregulation of gene expression. Furthermore, results from Scanning electronic microscopy (SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), and Thermogravimetric analysis (TG) confirmed the integration of nisin within BC. While being biocompatible with human cells, the BC/nisin composites exhibited antimicrobial activity. Moreover, mechanical property analyses showed a noticeable improvement in Young's modulus, tensile strength, and elongation at break by 161, 271, and 195 %, respectively. Additionally, the nisin content in fermentation broth was improved by 170 % after co-culture, accompanied by an 8 % increase in pH as well as 10 % decrease in lactate concentration. Real-time reverse transcription PCR analysis revealed an upregulation of 11 nisin-related genes after co-cultivation, with the highest increase in nisA (5.76-fold). To our knowledge, this is the first study which demonstrates that an increase in secondary metabolites after co-culturing is modulated by gene expression. This research offers a cost-effective approach for BC composite production and presents a technique to enhance metabolite concentration through the regulation of relevant genes.


Assuntos
Lactococcus lactis , Nisina , Humanos , Nisina/química , Lactococcus lactis/metabolismo , Antibacterianos/metabolismo , Ácido Láctico/metabolismo , Fermentação
5.
Int J Biol Macromol ; 253(Pt 4): 127020, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37741484

RESUMO

For the drug delivery system, drug carriers' selection is critical to the drug's success in reaching the desired target. Drug carriers from natural biopolymers are preferred over synthetic materials due to their biocompatibility. The use of polysaccharide gums in the drug delivery system has received considerable attention in recent years. Polysaccharide gums are renewable resources and abundantly found in nature. They could be isolated from marine algae, microorganisms, and higher plants. In terms of carbohydrates, the gums are water-soluble, non-starch polysaccharides with high commercial value. Polysaccharide gums are widely used for controlled-release products, capsules, medicinal binders, wound healing agents, capsules, and tablet excipients. One of the essential applications of polysaccharide gum is drug delivery systems. The various kinds of polysaccharide gums obtained from different plants, marine algae, and microorganisms for the drug delivery system application are discussed comprehensively in this review paper.


Assuntos
Sistemas de Liberação de Medicamentos , Polissacarídeos , Portadores de Fármacos , Excipientes , Gomas Vegetais
6.
Int J Biol Macromol ; 250: 126267, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37567526

RESUMO

Repeated-batch fermentation with fungal mycelia immobilized in plastic composite support (PCS) eliminates the lag phase during fermentation and improves metabolite productivity. The strategy is implemented herein, and a novel modified PCS is developed to enhance exopolysaccharide (EPS) production from the medicinal fungus Cordyceps militaris. A modified PCS (SYE + PCS) was made by compositing polypropylene (PP) with a nutrient mixture containing soybean hull, peptone, yeast extract, and minerals (SYE+). The use of SYE + PCS has consistent cell productivity throughout the multiple fermentation cycles, which resulted in a more higher cell productivity after second batch compared to unmodified PCS. The cell grown on SYE + PCS also generates a higher yield of EPS (3.36, 6.93, and 5.72 g/L in the first, second, and third fermentation cycles, respectively) up to three-fold higher than the cell immobilized on unmodified PCS. It is also worth noting that the EPS from mycelium grown on SYE + PCS contains up to 2.3-fold higher cordycepin than those on unmodified PCS. The presence of nutrients in SYE + PCS also affects the hydrophobicity and surface roughness of the PC, improving mycelial cell adhesion. This study also provides a preliminary antioxidant activity assessment of EPS from immobilized C. militaris grown with SYE + PCS.

7.
Molecules ; 28(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446565

RESUMO

The cost-effectiveness and high efficiency of atmospheric cold plasma (ACP) incentivise researchers to explore its potentials within the food industry. Presently, the destructive nature of this nonthermal technology can be utilised to inactivate foodborne pathogens, enzymatic ripening, food allergens, and pesticides. However, by adjusting its parameters, ACP can also be employed in other novel applications including food modification, drying pre-treatment, nutrient extraction, active packaging, and food waste processing. Relevant studies were conducted to investigate the impacts of ACP and posit that reactive oxygen and nitrogen species (RONS) play the principal roles in achieving the set objectives. In this review article, operations of ACP to achieve desired results are discussed. Moreover, the recent progress of ACP in food processing and safety within the past decade is summarised while current challenges as well as its future outlook are proposed.


Assuntos
Gases em Plasma , Eliminação de Resíduos , Alimentos , Indústria Alimentícia , Manipulação de Alimentos/métodos
8.
Int J Biol Macromol ; 234: 123680, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36801225

RESUMO

Bacterial cellulose (BC) is used in biomedical applications due to its unique material properties such as mechanical strength with a high water-absorbing capacity and biocompatibility. Nevertheless, native BC lacks porosity control which is crucial for regenerative medicine. Hence, developing a simple technique to change the pore sizes of BC has become an important issue. This study combined current foaming BC (FBC) production with incorporation of different additives (avicel, carboxymethylcellulose, and chitosan) to form novel porous additive-altered FBC. Results demonstrated that the FBC samples provided greater reswelling rates (91.57 % ~ 93.67 %) compared to BC samples (44.52 % ~ 67.5 %). Moreover, the FBC samples also showed excellent cell adhesion and proliferation abilities for NIH-3T3 cells. Lastly, FBC allowed cells to penetrate to deep layers for cell adhesion due to its porous structure, providing a competitive scaffold for 3D cell culture in tissue engineering.


Assuntos
Celulose , Engenharia Tecidual , Camundongos , Animais , Celulose/química , Porosidade , Engenharia Tecidual/métodos , Adesão Celular , Técnicas de Cultura de Células em Três Dimensões , Tecidos Suporte/química , Materiais Biocompatíveis/química
9.
Biomater Adv ; 146: 213269, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36696782

RESUMO

Tuberculosis (TB) is a disease caused by the M. tuberculosis bacteria infection and is listed as one of the deadliest diseases to date. Despite the development of antituberculosis drugs, the need for long-term drug consumption and low patient commitment are obstacles to the success of TB treatment. A continuous drug delivery system that has a long-term effect is needed to reduce routine drug consumption intervals, suppress infection, and prevent the emergence of drug-resistant strains of M. tuberculosis. For this reason, biomolecule metal-organic framework (BioMOF) with good biocompatibility, nontoxicity, bioactivity, and high stability are becoming potential drug carriers. This study used a bioactive protocatechuic acid (PCA) as organic linker to prepare copper-based BioMOF Cu-PCA under base-modulated conditions. Detailed crystal analysis by the powder X-ray diffraction demonstrated that the Cu-PCA, with a chemical formula of C14H16O13Cu3, crystalizes as triclinic in space group P1. Comprehensive physicochemical characterizations were provided using FTIR, SEM, XPS, TGA, EA, and N2 sorption. As a drug carrier, Cu-PCA showed a high maximum rifampicin (RIF) drug loading of 443.01 mg/g. Upon resuspension in PBS, the RIF and linkers release profile exhibited two-stage release kinetic profiles, which are well described by the Biphasic Dose Response (BiDoseResp) model. A complete release of these compounds (RIF and PCA) was achieved after ~9 h of mixing in PBS. Cu-PCA and RIF@Cu-PCA possessed antibacterial activity against Escherichia coli, and good biocompatibility is evidenced by the high viability of MH-S mice alveolar macrophage cells upon supplementations.


Assuntos
Estruturas Metalorgânicas , Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Rifampina/farmacologia , Rifampina/uso terapêutico , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/uso terapêutico , Cobre/farmacologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose/tratamento farmacológico , Portadores de Fármacos/química
10.
Int J Biol Macromol ; 231: 123322, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690234

RESUMO

Numerous studies have reported various approaches for synthesizing phosphate-capturing adsorbents to mitigate eutrophication. Despite the efforts, concerns about production cost, the complexity of synthesis steps, environmental friendliness, and applicability in industrial settings continue to be a problem. Herein, phosphate-selective composite adsorbents were prepared by incorporating alginate (Alg) with MIL100 and MIL101 to produce the MIL100/Alg and MIL101/Alg beads, where Fe3+ served as the crosslinker. The unsaturated coordination bond of MIL100 and MIL101 serves as a Lewis acid that can attract phosphate. The adsorption equilibrium isotherm, uptake kinetics, and effects of operating parameters were studied. The phosphate adsorption capacity of MIL100/Alg (103.3 mg P/g) and MIL101/Alg (109.5 mg P/g) outperformed their constituting components at pH 6 and 30 °C. Detailed evaluation of the adsorbent porosity using N2 sorption reveals the formation of mesoporous structures on the Alg network upon incorporation of MIL100 and MIL101. The composite adsorbents have excellent selectivity toward anionic phosphate and can be easily regenerated. Phosphate adsorption by MIL100/Alg and MIL101/Alg was driven by electrostatic attraction and ligand exchange. Preliminary economic analysis on the synthesis of the adsorbents indicates that the composites, MIL100/Alg and MIL101/Alg, are economically viable adsorbents.


Assuntos
Alginatos , Poluentes Químicos da Água , Alginatos/química , Fosfatos/química , Água/química , Cinética , Adsorção , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/química
11.
Molecules ; 27(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500218

RESUMO

Pickled radish (Raphanus sativus) is a traditional Asian ingredient, but the traditional method takes decades to make this product. To optimize such a process, this study compared the saponin content of pickled radishes with different thermal processing and traditional processes (production time of 7 days, 10 years, and 20 years) and evaluated the effects of different thermal processes on the formation of radish saponin through kinetics study and mass spectrometry. The results showed that increasing the pickling time enhanced the formation of saponin in commercial pickled radishes (25 °C, 7 days, 6.50 ± 1.46 mg g-1; 3650 days, 23.11 ± 1.22 mg g-1), but these increases were lower than those induced by thermal processing (70 °C 30 days 24.24 ± 1.01 mg g-1). However, it was found that the pickling time of more than 10 years and the processing temperature of more than 80 °C reduce the saponin content. Liquid chromatography-mass spectrometry (LC-MS) analysis showed that the major saponin in untreated radish was Tupistroside G, whereas treated samples contained Asparagoside A and Timosaponin A1. Moreover, this study elucidated the chemical structure of saponins in TPR. The findings indicated that thermal treatment could induce functional saponin conversion in plants, and such a mechanism can also be used to improve the health efficacy of plant-based crops.


Assuntos
Brassicaceae , Raphanus , Saponinas , Raízes de Plantas/química , Saponinas/análise , Extratos Vegetais/química
12.
Polymers (Basel) ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36501594

RESUMO

In this study, CNCs were extracted from durian rind. Modification to CNCs with saponin was conducted at 50 °C for one h. CNCs and CNCs-saponin were employed as dexamethasone carriers. Modification to CNCs using saponin did not change the relative crystallinity of CNCs. CNCs' molecular structure and surface chemistry did not alter significantly after modification. Both nanoparticles have surface charges independently of pH. Dexamethasone-released kinetics were studied at two different pH (7.4 and 5.8). Higuchi, Ritger-Peppas, first-order kinetic and sigmoidal equations were used to represent the released kinetic data. The sigmoidal equation was found to be superior to other models. The CNCs and CNCs-saponin showed burst release at 30 min. The study indicated that cell viability decreased by 30% after modification with saponin.

13.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296587

RESUMO

Black garlic (BG) is an emerging derivative of fresh garlic with enhanced nutritional properties. This study aimed to develop functional BG products with good consumer acceptance. To this end, BG was treated with freezing (F-BG), ultrasound (U-BG), and HHP (H-BG) to assess its sensory and functional properties. The results showed that F-BG and H-BG had higher S-allyl-cysteine (SAC), polyphenol, and flavonoid contents than BG. H-BG and F-BG displayed the best sensory quality after 18 days of aging, while 5-hydroxymethylfurfural (5-HMF), SAC, and polyphenols were identified as the most influential sensory parameters. Moreover, the F-BG and H-BG groups achieved optimal taste after 18 days, as opposed to untreated BG, which needed more than 24 days. Therefore, the proposed approaches significantly reduced the processing time while enhancing the physical, sensory, and functional properties of BG. In conclusion, freezing and HHP techniques may be considered promising pretreatments to develop BG products with good functional and sensory properties.


Assuntos
Produtos Biológicos , Alho , Polifenóis , Congelamento , Cisteína , Antioxidantes , Flavonoides
14.
Food Chem ; 390: 133137, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561506

RESUMO

We determined the effect of pulsed electric field (PEF)-assisted thawing on the texture and muscle tissue of Pekin duck meat. The results indicated that 1-4 kV/cm of PEF shortened the thawing time by 20%-50%. Furthermore, 1-3 kV/cm of PEF-assisted thawing reduced the effect of thawing on meat quality, decreased thawing loss by 28% and protein loss by 19%, and maintained meat quality similar to that of fresh meat. Using low-field nuclear magnetic resonance, we confirmed that PEF stabilized the water retention capacity of muscle tissues during thawing. Microstructure and secondary structure analyses revealed that PEF accelerated the melting of ice crystals, reducing the damage caused by ice crystals by 70% and maintaining the stability of the α-helix and ß-sheet. These results revealed the potential of PEF-assisted methods for use in thawing meat.


Assuntos
Qualidade dos Alimentos , Congelamento , Carne , Aves Domésticas , Animais , Patos , Eletricidade , Gelo , Carne/análise
15.
Polymers (Basel) ; 14(8)2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-35458368

RESUMO

Myristica fragrans essential oil (MFEO) is a potential active compound for application as an active packaging material. A new approach was developed using a cold plasma treatment to incorporate MFEO to improve the optical, physical, and bacterial inhibition properties of the film. The MFEO was added as coarse emulsion (CE), nanoemulsion (NE), and Pickering emulsion (PE) at different concentrations. The PE significantly affected (p < 0.05) the optical, physical, and chemical properties compared with CE and NE films. The addition of MFEO to low-density polyethylene (LDPE) film significantly reduced water vapor permeability (WVP) and oxygen permeability (OP) and showed marked activity against E. coli and S. aureus (p < 0.05). The release rate of PE films after 30 h was 70% lower than that of CE and NE films. Thus, it can be concluded that the fabrication of active packaging containing MFEO is a potential food packaging material.

16.
Nanomaterials (Basel) ; 12(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055261

RESUMO

The fast depletion of fossil fuels has attracted researchers worldwide to explore alternative biofuels, such as biodiesel. In general, the production of biodiesel is carried out via transesterification processes of vegetable oil with the presence of a suitable catalyst. A mixed metal oxide has shown to be a very attractive heterogeneous catalyst with a high performance. Most of the mixed metal oxide is made by using the general wetness impregnation method. A simple route to synthesize silane-modified mixed metal oxide (CaO-CuO/C6) catalysts has been successfully developed. A fluorocarbon surfactant and triblock copolymers (EO)106(PO)70(EO)106 were used to prevent the crystal agglomeration of carbonate salts (CaCO3-CuCO3) as the precursor to form CaO-CuO with a definite size and morphology. The materials show high potency as a catalyst in the transesterification process to produce biodiesel. The calcined co-precipitation product has a high crystallinity form, as confirmed by the XRD analysis. The synthesized catalyst was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The mechanism of surface modification and the effects of the catalytic activity were also discussed. The biodiesel purity of the final product was analyzed by gas chromatography. The optimum biodiesel yield was 90.17% using the modified mixed metal oxide CaO-CuO/C6.

17.
Chemosphere ; 291(Pt 2): 132759, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34742753

RESUMO

The development of environmentally friendly adsorbents has been extensively carried out to overcome the detrimental effects of heavy metal accumulation, which has persistently become a global ecological problem. In pursuit of generating eco-friendly adsorbents, a green method for synthesizing thiamine functionalized-Fe3O4 (FT) was developed in this study. A one-step chemical oxidation and functionalization technique was used to prepare FT using the ammonia-containing solvent. A molar ratio of ammonia:Fe:thiamine of 15:1:1 was shown to produce FT15 with high yield, adsorptivity, and purity. XRD, XPS, FTIR, SEM, and SQUID characterization of FT15 revealed the formation of superparamagnetic thiamine functionalized Fe3O4 in their particles. This superparamagneticity facilitates the easy recovery of FT15 particles from the waste-containing solution by using an external magnetic force. The batch adsorption of Cu(II) onto FT15 showed the best fit with the Sips adsorption isotherm model with a maximum adsorption capacity of 426.076 mg g-1, which is 5.69-fold higher capacity than the control unmodified Fe3O4 (F15). After five adsorption-desorption cycles, the FT15 can maintain up to 1.95-fold higher capacity than the freshly synthesized F15. Observation on the physicochemical properties of the post-adsorption materials showed the contribution of an amine group, pyrimidine ring, and the thiazolium group of thiamine in boosting its adsorption capacity. This study provides important findings to advance the adsorptivity of magnetic adsorbents with promising recoverability from aqueous solution by employing naturally available and environmentally friendly compounds such as thiamine.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Cobre , Concentração de Íons de Hidrogênio , Íons , Cinética , Nanopartículas Magnéticas de Óxido de Ferro , Tiamina , Poluentes Químicos da Água/análise
18.
Environ Res ; 207: 112162, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610325

RESUMO

The removal of persistent antibiotics from the water bodies can be quite challenging. The present study deals with the removal of doripenem, one of the most stable and persistent antibiotics, from aqueous solution via adsorption technique using the low-cost structured alginate-immobilized bentonite (Alg@iB) beads which can be easily recovered after the process. Alg@iB possesses a porous interior and higher basal spacing compared with the acid-activated bentonite (iB). Its adsorption/desorption isotherm corresponds to type IV IUPAC classification and H4-type hysteresis loops, implying the presence of slit- or plane-shaped pores. The influences of four independent adsorption parameters, e.g., pH, initial doripenem concentrations (md), temperature (T), and Alg@iB loading (mc), on the removal rate of doripenem (Yd) are investigated. The maximum Yd (95.8% w/w) is obtained at pH = 5, mc = 1.4% w/v, T = 50 °C, and md = 250 mg/l. The study suggests that the adsorption of doripenem is spontaneous and endothermic. Further analysis using the multi-linear intra-particle diffusion (IPD) model indicates that the rate-governing step in this adsorption process is the physical diffusion from the bulk solution to the boundary layer of Alg@iB. However, the mechanism study also considers the chemical hydrogen binding between the hydronium ions of Alg@iB and hydroxyl groups of doripenem as one of the driving forces that promote adsorption. Alg@iB shows good reusability with Yd > 90% w/w up to five adsorption cycles. Based on the study, the Alg@iB beads exhibit excellent affinity to doripenem, indicating that an effective doripenem removal can be achieved using this sorbent material.


Assuntos
Bentonita , Poluentes Químicos da Água , Adsorção , Alginatos , Antibacterianos/análise , Concentração de Íons de Hidrogênio , Cinética , Água , Poluentes Químicos da Água/análise
19.
Antioxidants (Basel) ; 10(10)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34679724

RESUMO

Advanced glycation end products (AGEs) can induce oxidative stress and inflammation. AGEs are major risk factors for the development of many aging-related diseases, such as cancer and diabetes. In this study, Pholiota nameko polysaccharides (PNPs) were prepared from water extract of P. nameko via graded alcohol precipitation (40%, 60%, and 80% v/v). We explored the in vitro antiglycation ability of the PNPs and inhibition of methylglyoxal (MG)-induced Hs68 cell damage. In a bovine serum albumin (BSA) glycation system, PNPs significantly inhibited the formation of Amadori products. Fluorescence spectrophotometry revealed that the PNPs trapped MG and reduced MG-induced changes in functional groups (carbonyl and ε-NH2) in the BSA. Pretreating Hs68 cells with PNPs enhanced the cell survival rate and protected against MG-induced cell damage. This was due to decreased intracellular ROS content. PNPs thus mitigate skin cell damage and oxidative stress resulting from glycation stress, making them a potential raw material for antiaging-related skincare products.

20.
Int J Biol Macromol ; 193(Pt A): 721-733, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655594

RESUMO

The development of porous adsorbent materials from renewable resources for water and wastewater treatment has received considerable interest from academia and industry. This work aims to synthesize composite hydrogel from the combination of guar gum (a neutral galactomannan polysaccharide) and TiO2. The TiO2-embedded guar gum hydrogel (TiO2@GGH) was utilized to remove methylene blue through adsorption and photodegradation. The presence of TiO2 particles in the hydrogel matrix (TiO2@GGH) was confirmed by scanning electron microscopy-energy dispersive X-ray and X-ray photoelectron spectroscopy analysis. The mercury intrusion and N2 sorption isotherm indicate the macroporous structure of the TiO2@GGH composite, showing the presence of pore sizes ~420 µm. The dye removal efficiency of the GGH and TiO2@GGH was evaluated in batch mode at ambient temperature under varying pH. The effect of UV radiation on the dye removal efficiency was also assessed. The results demonstrated that the highest dye removal was recorded at pH 10, with the equilibrium condition achieved within 5 h. UV radiation was shown to enhance dye removal. The maximum adsorption capacity of TiO2@GGH is 198.61 mg g-1, while GGH sorbent is 188.53 mg g-1. The results imply that UV radiation gives rise to the photodegradation effect.


Assuntos
Galactanos/química , Hidrogéis/química , Mananas/química , Azul de Metileno/química , Nanocompostos/química , Fotólise , Gomas Vegetais/química , Titânio/química , Adsorção , Galactose/análogos & derivados , Microscopia Eletrônica de Varredura , Raios Ultravioleta , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...